MRI-based inverse potential mapping of premature ventricular contractions

- Proof of concept -

MJW Götte

Haga Teaching Hospital The Hague The Netherlands SCMR

Jan. 27, 2016 LA

Disclosures

None

Background

- Inverse potential mapping (IPM)
 - clinically useful tool to map ventricular arrhythmias
 - facilitates catheter ablation

Pre-procedural body surface mapping (BSM)

- increases localization accuracy
- reduces procedural time compared to standard of care (activation and pace mapping)¹

The required CT scan

increases radiation exposure compared to the traditional approach¹

Objective

To evaluate the accuracy of a MRI-based BSM solution in comparison to the current gold-standard (invasive activation mapping) for localizing outflow tract PVC's

Methods – IPM and MRI

Results – RVOT PVC

Results – ICC

Case	PVC focus IPM	Ablation site	Observer 1 (mm)	Observer 2 (mm)	ICC
1	NCC-LCC junction	LCC	9,3	7,7	ICC = 0.812 p=0.004
2	RVOT-Septal	RVOT-Septal	9,1	10,5	
3	RVOT-Anterior proximal	RVOT-Anterior proximal	6,4	5,2	
4	RVOT-Anterior	RVOT-Anterior	12,1	9,7	
5	RVOT-Septal proximal	RVOT-Septal proximal	7,6	10,3	
6	RVOT-Antero-septal	RVOT-Septal	11,7	11,4	
7	RVOT-Septal	RVOT-Septal	3,6	2,6	
8	NCC	NCC	6,4	8	
Mean			8.3±2.7	8.2±2.8	

Bhagirath et al, Circulation AE, 2015

Conclusion

The proposed MRI-based IPM method

- is accurate for non-invasive PVC localization
- provides a radiation-free alternative for the currently available BSM approach

Clinical perspective

In addition to anatomy, MRI offers

- Functional (hemodynamic) assessment
- Evaluation of tissue characteristics

These properties facilitate the study of **electrical activation** in relation to **tissue characteristics**

Clinical perspective

Research Team

- Principle investigator: M.J.W. Götte¹
- PhD students: P. Bhagirath¹, A.W.M. van der Graaf¹, E.A. van Dongen¹
- Physicist: J. de Hooge¹
- **Electrophysiologists:** V.J.H.M. van Driel¹, H. Ramanna¹, N.M.S. de Groot² **MT:** S. Ghoerbien¹

¹Dept. of Cardiology, Haga Teaching Hospital, The Hague, The Netherlands ²Dept. Of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands

Haga Teaching Hospital The Hague The Netherland