

ICMR Case Presentations: Lessons From Year One

Suren V. Reddy, MD

Associate Professor of Pediatrics

University of Texas Southwestern/Childrens Medical Center

Dallas, Texas

February 1st 2018

Disclosures

None

Outline

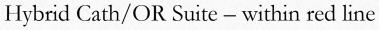
- Journey
- Infrastructure MRI, Cath lab
- Process
 - Buy in Institution and Colleagues
 - Funding
- Cases Initial experience/lessons
- Missing Pieces
- Future

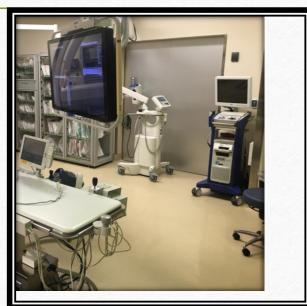
JOURNEY

- 2011-12: New Heart Center Surgical-Interventional Suites planning Dr. Nugent and team
 - Cath lab and MRI- colocation planned, Phillips, no rail road, Marquet table (too expensive)
- 2013: New Heart Center 78 Million Dollar renovation
- 2014 Discussed visiting labs/centers for iCMR hands on stalled as 'Migration' across the pond was imminent
- 2015: iCMR potential- discussed with Drs. RL and KR
 - Arrival of Drs. Greil and Hussain
- 2016 April: iCMR NHLBI Hands-On Workshop
 - Started meetings with MRI safety officer, planning at CMC, Dallas
- 2017 Jan-July: Planning, CMRI safety and institutional approvals, IRB, Safety checklists, dry runs/evac drills
- 2017 August: First iCMR case

INFRASTRUCTURE – DALLAS, TEXAS

Childrens Medical Center


UT Southwestern Medical Center



MRI and Cath Lab - Colocation

Phillips Ingenia 1.5 T Opens to red line and to outpatient via separate doors

PROCESS - Details

- Post Hands-On Workshop Met with institutional leadership to get buy in
- Buy in from Cardiology colleagues some initial success, ongoing process
- Meetings with MRI safety officer at CMC discussed work flow, thanks to material and videos from the NIH team
 - Having oldies Gerald and Tarique as part of the team helped to get approvals right away
- Cath lab, Anesthesia, and MRI staff/nursing discussed steps and why this is important!
 - Give them ownership of certain aspects and ask for suggestions
 - Delegated work flow and safety checklists
- Jan-July 2017: Planning, CMRI safety and institutional approvals, IRB, Safety checklists, dry runs/evac drills

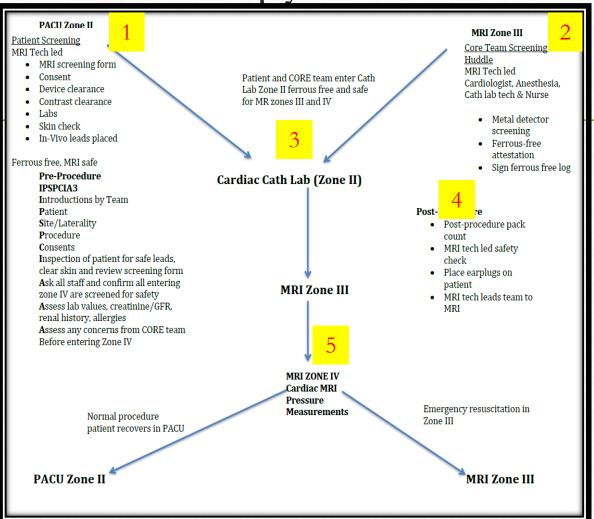
Its been 2 years! Let's Just Do It!

- Funds approved (Not ready for use)
- IRB approval

- No I suite (Interactive)
- No combi table ("Biceps technology")
- August 2017: First iCMR case at CMC, Dallas!
- No PRiMe Gen (Anesthesia monitors)
- No Optoacoustics (Sign language)
- No projectors/large screens (pt's TV for movies)
- Tired of waiting →

Before first case – August 2017

- Dry Run/Mock Drills Completed with core team and MRI safety officer X 2
 - Debrief after first one and made changes
- Clinical scenarios
 - Cath→MRI→Recovery
 - Cath \rightarrow MRI \rightarrow Cath \rightarrow Recovery
- Complications: Patient evacuation to Zone III versus direct to cath lab reviewed
 - Specific roles and Personnel in charge assigned


Work Flow CMR Fluoroscopy RHC

- Formed Core Team:
 - To keep same operators/anesthesia doc/nursing team for the first five cases
- Scheduling Single dedicated admin calls pt/families for scheduling
- Insurance approvals Clinically indicated Cath procedure, MRI clinical versus research to be specified, funds for 5 research based MRIs
- Consent at precath clinic visit or in Preop area

CMR Fluoroscopy RHC - Work Flow

Day of Procedure

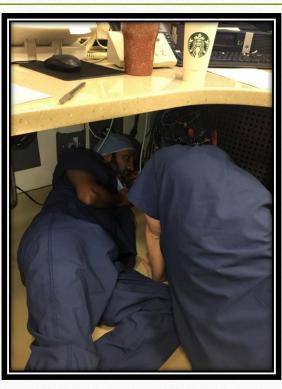
- Core team MRI safety check
 - Twirl, pockets sealed with tape
- Huddle/discuss case in MRI Zone III
- MRI magnet sterile drapes, diluted gadolinium 1/100
- Pt transfer to Cath lab
- Anesthesia induction
- \rightarrow Access first 3 cases*

MRI Safety Checklist! *Pre and *Post Access

Dedicated MRI (Marie and Amanda) and Cath (Phil/Maggie/Terry) personnel for Safety Checklist

"The Tex-Mex Burrito Wrap"

Transfer to MRI



MRI Control Room

Trouble shooting

"No stone unturned"!

"Looks like our days at KCL on Monday mornings"!


Work Flow

- Baseline interactive sequence scan for geometry/stamps ~ 10 mins
- Right heart catheterization 15-20 mins measure sats and pressures, calculate Qp and Qs (with Fick's) and PVR and SVR.
- MRI flows ≤ 10 mins: recheck pressures to calculate PVR with MRI Qp
- Hyperoxia/Nitric Oxide testing as needed
- If deemed to need catheter based intervention transfer to Cath lab
 - Otherwise Extubation in Zone III → post cath recovery

First case \rightarrow Fifth case

Case Example – Fontan, B/L Glenn, PA stenosis

- Partial Saturation (pSAT) sequence used by team at KCL.
 - allow for clear visualization of both cardiac anatomy and balloon-tip.
- Poster by MariNieves Velasco Forte MBBS.

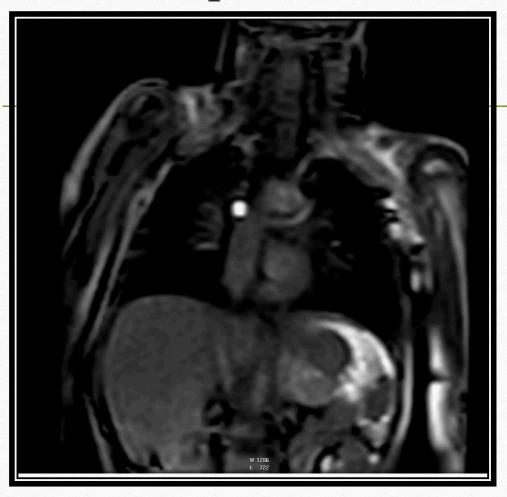
MRI-guided catheterization in children and young adults with congenital heart disease using the partial saturation (pSAT) sequence: Initial findings in diagnostic procedures

Mari N. Velasco Forte^{1,2}, Sébastien Roujol¹, B Rujisink¹, I Valverde¹, P Duong¹, Sascha Krueger ⁴ Tobias Schaeffter^{1,3}, Steffen Weiss ⁴, Kuberan Pushparajah ¹, Reza Razavi¹

Department of Biomedical Engineering, King's College London, London, United Kingdom; ²Hospital Universitario Virgen del Rocío Sevilla, Spain Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany; *Philips Research Laboratories, Innovative Technologies, Hamburg

INTRODUCTION

- MRI is a promising alternative to fluoroscopy for the guidance of cardiac catheterization procedures
- We have recently developed a partial saturation (pSAT) sequence which enables passive tracking with positive contrast of a gadolinium-filled balloon-wedge catheter. In this study, we sought to evaluate the performance of the pSAT sequence for MRI-guided catheterization in children and young adults with congenital heart disease (CHD).


METHODS

- 23 consecutive patients with CHD were referred for MRI-guided catheterization for pulmonary vascular resistance (PVR) analysis; 4 patients could not be
 recruited, 16 were enrolled at our institution and imaged using an XMR system (1.5T Philips Achieva combined BV Pulsera cardiac X-Ray unit); 3 patients
 were recruited at a different centre and scanned using a 1.5T Philips Ingenia MRI system.
- MRI-guidance was performed using the pSAT sequence and either the iSuite real-time visualization platform® (Philips) (12 patients) or an interactive imaging mode (5 patients).

Case Example – Fontan, B/L Glenn, PA stenosis

- Partial Saturation (pSAT) sequence used by team at KCL.
 - allow for clear visualization of both cardiac anatomy and balloon-tip.
- Poster by MariNieves Velasco Forte MBBS.

MRI-guided catheterization in children and young adults with congenital heart disease using the partial saturation (pSAT) sequence: Initial findings in diagnostic procedures Mari N. Velasco Forte^{1,2}, Sébastien Roujol¹, B Rujisink¹, I Valverde¹, P Duong¹, Sascha Krueger ⁴

¹Department of Biomedical Engineering, King's College London, London, United Kingdom; ²Hospital Universitario Virgen del Rocío Sevilla, Spair ³Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany; ⁴Philips Research Laboratories, Innovative Technologies, Hambur

INTRODUCTION

- MRI is a promising alternative to fluoroscopy for the guidance of cardiac catheterization procedures
- We have recently developed a partial saturation (pSAT) sequence which enables passive tracking with positive contrast of a gadolinium-filled balloon-wedge catheter. In this study, we sought to evaluate the performance of the pSAT sequence for MRI-guided catheterization in children and young adults with congenital heart disease (CHD).

METHODS

- 23 consecutive patients with CHD were referred for MRI-guided catheterization for pulmonary vascular resistance (PVR) analysis; 4 patients could not be
 recruited, 16 were enrolled at our institution and imaged using an XMR system (1.5T Philips Achieva combined BV Pulsera cardiac X-Ray unit); 3 patients
 were recruited at a different centre and scanned using a 1.5T Philips Ingenia MRI system.
- MRI-guidance was performed using the pSAT sequence and either the iSuite real-time visualization platform® (Philips) (12 patients) or an interactive imaging mode (5 patients).

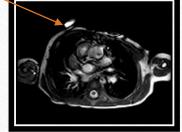
First Five Cases Information

- Age: 3 mths to 17 yrs
- Weight: 7.6 kgs to 54.2 kgs
- Ventricle:
 - 3 Single V patients (1 BT shunt, 1 b/l Glenn, 1 Fontan with b/l Glenn)
 - 2 Two V patients (TOF pts)
- Visualization poor in pt 3 with Harrington rods
- Complications None
 - Near misses: Two accidental table movement into magnet, no problems encountered.
 - Solution: Deactivate the switch board on the operator side
- Need to decrease total anesthesia times

	Patient 1	Patient 2	Patient 3	Patient 4	Patient 5
Date	8/9/2017	8/13/2017	8/17/2017	11/29/2017	1/22/2018
Age	3m	1y11m	17y	2y	5y2m
Weight (kg)	7.6	11.5	54.2	13.3	17.4
Ventricular status	1V	1V	2V	2V	1V
Diagnosis	Heterotaxy (A,D,D), dextrocardia, common AVC, sup/inf ventricles, pulmonary atresia with discon PAs s/p unifocalization + BTS	Anatomically corrected malposition s/p modified DKS s/p b/l Glenn	TOF s/p repair, s/p surgical bioprosthetic pulm valve implantation s/p LPA stent	TOF w/ absent pulmonary valve s/p 12 mm Ao homograft, LeCompte maneuver	d-TGA, hypoplastic RV s/p Norwood, b/l Glenn, & fenestrated extracardiac Fontan
Indications	Single versus two ventricle repair assessment?	Surgical planning	RV volumes, LPA stenting?	RV volumes, balloon/stent homograft?	Fontan pressures. PLE? Fenestration?
Cath Access/Fr	RFA(4F), RFV (5F)	RFA(4F), RIJ/LIJ(5F)	RFA(4F), RFV(5-16F)	RFV(5F), RFA(20ga)	RFV(6F), RFA(20ga
Visualizations? 1. Good 2. Satisfactory 3. Poor	1	1	2	1	1
Obtained all info? (Y/N)	Y	Y	Y	Y	Y
Cath (C1): Qp/Qs	5.7/3.8 = 1.5	1.9/4.6 = 0.4	3.2/3.2 = 1	4.08/4.08 = 1	3.5/3.5 = 1
MRI (C1): Qp/Qs	3.1/3.33 = 0.93	1.5/3 = 0.5	2.8/2.7 = 1	4.4/4.4 = 1	4.6/3.9 = 1.18
Condition 2	N/A	Cath lab repeat	N/A	N/A	20ppm iNO
Cath (C2): Qp/Qs	N/A	2.5/6.6 = 0.4/1	N/A	N/A	3.7/3.7 = 1
MRI (C2): Qp/Qs	N/A	N/A	N/A	N/A	5.9/4.6 = 1.3
Cath (C1): PVR (Wood U.m²)	1.4	2.6	2.2	1.47	2.0
MRI (C1): PVR (Wood U.m²)	2.6	2.85	2.4	1.4	2.2
Condition 2	N/A	Cath lab repeat	N/A	N/A	20ppm iNO
Cath (C2): PVR (Wood U.m²)	N/A	2.5	N/A	N/A	1.3
MRI (C2): PVR (Wood U.m²)	N/A	N/A	N/A	N/A	1.6
Total Time (mins) 1. Anesthesia 2. Sheath total 3. First RHC 4. Total Cath	1. 294 2. 128 3. 11 4. 119	1. 345 2. 283 3. 18 4. 65	1. 408 2. 321 3. 15 4. 134	1. 350 2. 170 3. 36 4. 36	1. 282 2. 242 3. 39 4. 157
Complications	None	None	None	Bed movement	Bed movement
Miscellaneous	Qp/Qs not matching up with MRI and Cath	Transferred to cath lab for repeat pressures and TEE	HD in cath lab LPA stent	Access obtained in MRI Zone 3 PAVM present	Access obtained in MRI Zone 3 AP collaterals

Lessons From 1st year

- Core team, drills, safety checks and Just do it!!!!
- Changes Anesthesia and access moved to Zone III
- Arterial sheath changed to 18-20 G dilator
- Conscious about anesthesia time
 - Get started with initial MRI scan/geometries while pressure tubings are calibrated etc.



Lessons from 1st year ...cont

- Visualization diluted gadolinium syringe placed on the chest to confirm
 - visualization
- Adjustments to partial saturation sequences
 - Based on patient body habitus and comorbities
 - Flip angle changes on the fly for better visualization
- Debrief is critical build a team with sense of ownership!

Missing Pieces - Future

- Visualization
 - Phillips I Suite commercially available
 - Ceiling mounted projector (Shieled TV, Fancy bulb less projectors etc)
 - Screen similar to NIH/CNMC labs (options looked into Pole Mount large TV/Screens etc)
- Combi Transfer Table waiting
- Wires for LHC and difficult RHC Nanoimaging
- Communication Optoacoustics
- Hemodynamic recording software
 - Sensis system, cath report in Syngodynamics
 - PRiME Gen system Thanks to John Kakareka, ECA Inc.

Many Thanks To

Dr. Tarique Hussain Dr. Gerald Greil Maggie, Terry and Phil

Ms. Amanda Potersnak Dr. Jenn Hernandez

The Heart Center Team – CMC/UTSW, Dallas

Many Thanks to The Entire iCMR Team!

Dr. Robert Lederman Lab, NHLBI Dr. Kanishka Ratnayaka, Dr. Toby Rogers et al. King's College, London Team Dr. Reza Razavi and team

Questions

- Multi-instutional research collaboration?
- Collaborate between institutions, increase "n" and ask meaningful research questions?
- Have an multiinstitutional/international database/registry?

